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Abstract
Polycrystalline graphene is a patchwork of coalescing graphene grains of varying lattice orientations and size,
resulting from the chemical vapor deposition (CVD)-growth at random nucleation sites on metallic substrates [1,
2, 3, 4, 5]. The morphology of polycrystalline graphene has become an important topic given its fundamental
role in limiting the mobilities compared to mechanically exfoliated graphene monolayers [6]. The relationship
between polycrystalline morphologies (grain sizes and grain boundary (GB) structures) and resulting physical
properties is also a central aspect of the graphene roadmap in view of applications such as flexible electronics
and high-frequency or spintronics devices [7]. Here we report new insights to the current understanding of
charge transport in polycrystalline geometries. We first created realistic models of large CVD-grown graphene
samples. Then, we used an efficient computational approach to compute charge mobilities within these systems
as a function of the average grain size and the coalescence quality between the grains. Our results, which agree
with recent experiments [8], reveal a remarkably simple scaling law for the mean free path and conductivity,
correlated to atomic-scale charge density fluctuations (electron-hole puddles) along GBs. These findings es-
tablish quantitative foundations of transport features in polycrystalline graphene, thereby paving the way for
improvements in graphene-based applications.
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Figure 1: Polycrystalline graphene samples.
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Figure 2: Density of states (DOS). a. DOS for pristine graphene (PG) and the structures presented in
Fig. 1. b. Higher magnification of the DOS close to the charge neutrality point (E = 0, area marked with a
rectangle in panel a). c. Atomic structure of one of the boundaries in sample “18 nm”, showing the electron-
hole puddles at GB sites that develop due to local variations in the charge density δi: local electron doping
(δi < −1 × 10−4e/atom) is shown in blue and local hole doping (δi > 1 × 10−4e/atom) in red. d. Local DOS
for atoms A1, A2 and A3 marked in panel c. e. Local DOS for atom A4 marked in panel c as compared to the
average DOS for pristine graphene (PG) and average LDOS for all atoms at GBs in the same sample (GB).

10

100

1000

10000

-15 -10 -5 0 5 10 15

µ
(c
m

2 /
V
s)

n (1012 cm-2)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1.0

D
(t
)
(n
m

2 f
s-

1 )

t (ps)

ba

c d

0

5

10

15

20

-2.0 -1.0 0 1.0 2.0

σ
S
C
(2
e
2 /
h
)

E (eV)

4e2/πh

0

5

10

15

20

25

-4 -3 -2 -1 0 1 2 3 4

l e
(n
m
)

E (eV)

PG
13 nm
18 nm

25.5 nm

br-18 nm
avg-18 nm
13 nm x √2

25.5 nm / √2

Figure 3: Transport properties. a. Diffusion coefficient (D(t)) for the samples presented in Fig. 1. b. Mean
free path ℓe(E) for equivalent structures with scaled ℓe(E) for samples with 〈d〉 ≈ 13 nm and 〈d〉 ≈ 25.5 nm,
showing the scaling law. c. Semi-classical conductivity (σsc(E)) for all samples and as scaled for the same cases
as above. d. Charge mobility (µ(E) = σsc(E)/en(E)) as a function of the carrier density n(E) in each of the

samples (n(E) = 1/S
∫ E

0
ρ(E)dE, S being a normalization factor).
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